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ABSTRACT 

A major  pa r t  of the  pape r  deals  wi th  the  l inear  search prob lem in which the  

cost funct ion is a s t r ic t ly  increasing convex funct ion f sa t is fying f (0 )  = 0. 

I t  is shown t h a t  a number  of resul ts  previously  es tabl i shed  for the  case 

f(t) = t a can be ex t ended  to the  convex case; in pa r t i cu la r  a sufficient 

condi t ion  for the  exis tence  of a min imiz ing  search s t r a t egy  of a s imple 

form is ob ta ined  for the  convex case. Numerous  resul ts  are ob ta ined  on the  

exis tence or o therwise  of t e r m i n a t i n g  and non- t e rmina t ing  op t ima l  search 

s t ra teg ies  for cost funct ions a l ready occurr ing  in the  l i tera ture .  

1. I n t r o d u c t i o n  and  N o t a t i o n  

In a sequence of papers [1-7] spanning nearly thirty years, one of the authors 

(often with the help of co-authors) has investigated the following linear search 

problem. 

A point on the real line is selected by means of a probability distribution F. 

The search for the point starts at zero and is made by a continuous motion with 

constant speed 1. The aim of the searcher is to minimize the expected cost where 
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the cost is a function of the time taken to locate the point or equivalently the 

path length required to find the point. 

In the earlier papers, the identity function was used for the cost but, in later 

papers, the analysis was generalized to cover the case when the cost is the a th  

power of the path length where a _> 1. Since the function f ( t )  = t ~ for t > 0 

and a >_ 1 is a special case of a convex function, it is natural to consider whether 

analogous results can be obtained in a more general context. The purpose of this 

article is to show that a number of the results can be generalized to the case when 

the cost function is taken to be a strictly increasing convex function f satisfying 

f(0) = 0. For  t h e  r e m a i n d e r  o f  t h e  p a p e r  f will be  used  solely to  d e n o t e  

such  a func t ion .  Since f is convex, its derivatives from the right and from the 

left always exist and they will be denoted by f~_ and fL respectively. In Section 3 

we obtain a sufficient condition for the existence of a minimizing search strategy 

of a simple form while in Section 4 we show that, for the uniform distribution on a 

compact interval, the minimizing search strategy travels directly to one end-point 

and then directly to the other. The main result of Section 5 gives a necessary and 

sufficient condition for a distribution on a compact interval to have a minimizing 

search strategy which is non-terminating for the a th  power case. Section 6 deals 

with a particular class of distributions called lopsided distributions and obtains 

various results on minimizing search strategies for these distributions. 

To present the problem more mathematically we need to introduce some 

notation. 

For a probability distribution F let x + = x+(F)  = sup{t: F( t )  < 1} and 

x -  = x - ( F )  = inf{t: F( t )  > 0}; we allow the possibilities x -  = - o c  and 

x + = o~. The linear search problem is only of interest when x -  < 0 < x + so we 

shall always assume that these inequalities hold. Further, as in previous papers 

on the topic and for the reasons given in them, we shall also assume that the 

probability functions F(t)  under consideration are continuous on the right for 

t _> 0 and continuous on the left for t < 0. We denote the set of such functions 

by ~'. A subset of F which plays an important role in the theory is one where 

the members are such that at least one of F - ( 0 )  and/~+ (0) is finite where 

[ ' - ( 0 )  = l imsup(F(t)  - F(O)) / t  and F+(0) = l imsup(F(t)  - F(0)) / t .  
iT0 tl0 

We will denote the subset of $- for which 1 ~ -  (0) is finite by $ ' -  and the subset 

for which _P+(0) is finite by ~+ .  
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A g e n e r a l i z e d  s e a r c h  s t r a t e g y  is a doubly-infinite sequence x = {xi}i~=_~ 

satisfying 

• "- _< x2i+2 _< x2i <_ " -  < 0 < . . .  < x2i-1 <_ x2i+t < " ' .  

The set of all such strategies is denoted by X. It  is clear tha t  if there is an n such 

that  xn and x,~+l are x -  and x + in either order then the value of the expected 

cost of locating the point is the same regardless of the values of succeeding entries. 

We shall allow Xn to be x -  or x + even when they are infinite. When  there is an 

integer i such that  xi = x -  or x + a s t ra tegy is said to be t e r m i n a t i n g ;  otherwise 

it is said to be n o n - t e r m i n a t l n g .  Intuit ively by choosing x E X the searcher 

employs a pa th  in which, for each integer r, he goes from xr to x~+l. 

If  x E X and there is an integer m such that  xi = 0 for all i < m, we say that  

x is a s t a n d a r d  s e a r c h  s t r a t e g y .  Clearly, for any s tandard  search s t ra tegy x, 

the subscripts can be renumbered so tha t  the first non-zero te rm is xl.  We put  

y +  = {x E 2d: xi = 0 for i < O, X2i_  1 > 0 and x2i < 0 for i > 0}, 

y -  = { x C X : x i = 0 f o r i < 0 ,  x2~-1 < 0 a n d x 2 i > 0 f o r i > 0 }  

and 

y=- y+oy- .  

For x C X and a real number  t, X ( x ,  t) is defined as follows: for t lying between 

Xn--1 and Xn+l, X ( x ,  t) = Itl + 2sn(x) where sn(x) = ~ i~=_~  [x~ I. Thus X ( x ,  t) 

is the pa th  length taken to reach the point t when using x. 

For x E X the e x p e c t e d  c o s t  f u n c t i o n  X f ( x )  is then defined by 

j f(X(x, t))dF(t). 
O ~  

A trivial a rgument  shows tha t  infxex  X f ( x )  = infx~y X / ( x )  and in future we 

shall use p to denote either of these expressions. If there is no search s t ra tegy for 

which X f  is finite we adopt  the convention tha t  p is c¢ and every search s t ra tegy 

is minimizing. 
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2. P r e l i m i n a r y  r e s u l t s  

In the par t icular  case when f is the a t h  power of the pa th  length wi th  a > 1, p 

is finite whenever f _ ~  f ( I t l ) d F  is finite. T h a t  this does not car ry  over direct ly to 

our more  general s i tuat ion is easily seen by taking f ( t )  = exp(t  2) and F the sym- 

metr ic  dis t r ibut ion having density function p of the form 

p(t) = k e x p ( - t  2 - t) for t _> 0 and appropr ia te  k. However the following l e m m a  

shows tha t  there is a result  of the same form for the general case. 

/? LEMMA 2.1: I f  f (9 l t [ )dF( t )  < oo, then # is finite. Further  we have 
O Q  

/? ~ <_ I(9t t l )df( t ) .  

Proof: Stra ightforward general izat ion of the proof  for the case f ( t )  = t in [1]. 

| 

R e m a r k  2.2: If x + and x -  are bo th  finite, then # is finite. 

Proof: Trivial. 

LEMMA 2.3: Let  F E ~', # be finite and (x (n/) a sequence in y such that  

X f ( x  (n)) ~ #. Then there is a subsequence (y(~)) o f ( x  (n)) such that  one of  the 

following holds: 

(a)  There  exists  a sequence (Yi) o f  real numbers  such that  y}~) ~ yi as n ---, ee 

for all posi t ive integers i. 

(/3) There is a posi t ive integer k and real numbers  Yl (i = 1 , . . . ,  k - 1) such 

t h a t x -  < yi < x + f o r i  < k - -  l ,  yk_ l  E { x - , x  + } a n d y ~ ) ~ y i a s n - - ~ o c  

for i <_ k -  1. 

Proof: Let (x(n)) be a sequence in y such tha t  X f ( x  (n)) --* # as n --* ~ .  By 

taking a subsequence we may  assume X l ( x  (n)) < p +  1 for all n. Two cases arise. 

(a )  For all posi t ive integers i there is a b~ such tha t  x~ '~) E [ -b l ,  b~] for all n. 

In this case the result follows via a s t andard  diagonal izat ion procedure.  

(3) There  is a posit ive integer i such tha t ,  for all b, there is an n such tha t  

[x~n)[ > b. Let k be  the smallest  integer i for which this holds. Then,  by taking a 

subsequence,  we m a y  assume tha t  (x (~)) also satisfies xi-(n) ~ xl for 0 < i < k - 1. 

We show tha t  xk-1  = x -  or x +. 

Firs t ly  suppose X(kn)l _~ 0 and xk-1 ~ x - .  Then,  by taking a subsequence,  we 

m a y  assume tha t  F ( x ~ ) l )  > F ( X k _ l ) / 2  > 0 for all n. Pu t  A = 2 ( # + l ) / F ( x k _ l )  
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and take B such that f ( t )  > A for t > B, then there is a positive integer N such 

that x(k N) > B. We then have 

XI(x(N) ) > f ( X , t ) d F  >_ l(2x~N))dF > I(2B)F(x~N~) 
J - - o o  

> AF(x~N__~)= 2 ( .  + 1) 

and we have a contradiction. Hence, if x(~!l <_ 0, we have xk-1 = x - .  

Similar arguments show that xk-1 ----- X + when x~__)l _> 0. 1 

When (a) or (/3) of Lemma 2.3 are satisfied by a sequence (y(n)) in y we write 
y(n) ___+ y. 

3. Suff ic ient  cond i t i ons  for a m i n i m i z i n g  s t a n d a r d  s e a r c h  s t r a t e g y  

In this section it is shown that  there is always a minimizing standard search 

strategy when F E ~-- U .T +. The corresponding result for the case when f ( t )  = 

t ~ where a >_ 1 and x - ,  x + are both infinite is given by Theorem 9 in [4]. The 

proof of that theorem used a previous lemma (Lemma 7) which in turn appealed 

to a previous lemma (Lemma 4). Unfortunately Lemma 4 cannot be generalized 

to the present context as the following example shows. 

Example: Let f ( t )  = exp(t 2) and F be the discrete probability distribution 

which, for an appropriate k, has probabilities k j - eexp{ - (3 .2  j-1 - 2) 2} at the 

points (--2)  j - 1  for j = 1,2 . . . . .  Then, for y C Y defined by yi = ( - 2 )  i+ l  for 

i = 1, 2 . . . . .  we have 
o o  

Xl(Y ) = k E j - 2  < oc 
j=l 

but, for 0 < 7/_< 1, 

f ( X f ( y ,  t) + ~)dF(t) = k E j-2exp{r/(3.2 j -1  - 2) + 7/2} 
oo j = l  

which diverges. 

LEMMA 3.1: Let F E Jr-. Then there is a K > 0 satisfying 2 F(K )  < 1 + F(0) 

such that, whenever x E 3 2+ and x2,x3 C ( - K , K ) ,  we have Xy(y  ) < XS(x ) 

where y E 3 2+ is given by y~ = xi+2. 
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Proof." Since F E ~ -  there is a positive number D such that  F - ( 0 )  < D. 

Choose K > 0 such that  

g < ( 1 / D ) F ( - K ) ,  

2 F ( K )  < 1 + F(0), 

K < min{x +, Ix-I} 

and 

F(O) - F(t)  < ( - t ) D  for all - K < t < 0. 

(Note that  the first and second inequalities can be satisfied for arbitrarily small 

values of K since 0 < F(0) < 1 and F is continuous at 0 while the fourth can be 

satisfied because F - ( 0 )  < D.) 

Let x E Y+ with Xl < x + and x2 > x - .  Define y E Y+ by Yl = x~+2 then 

D:(x ,  y) = X l ( x )  - X f ( y )  

= f ( 2 s 2 i + 2 ( X )  -{- t )  -- f ( 2 s 2 1 + 2 ( X )  2r t -- 2X 1 + 2 x 2 ) d F ( t )  
i=0  ,-' x21+l 

Z ° + : ( I t l  + 2 X l )  - f ( l t [  + 2 x 3 ) d F ( t )  
2 

_ f ( 2 X l  - 2 z 2 ) ( x  - F ( X l ) )  - 2 ( z 3  - z ~ ) f ' _ ( 2 z a  - z 2 ) ( f ( O )  - f ( z ~ ) )  

+ 2(x1  - ~ 2 ) S ; ( 2 x ~  - x 2 ) F ( ~ )  

_> 2 f ' _ ( 2 z a  - z 2 ) { ( - x 2 ) F ( x 2 )  - ( z a  - X l ) ( F ( 0 )  - F ( x 2 ) ) } .  

Now, for - K  < x2 and x3 < K, 

( -x2)F(x2)  >_ ( - x 2 ) F ( - K )  > - x 2 D K  > {F(0) - F( x 2 ) I K  

_> (x3  - -  X l ) { F ( 0 )  - -  F ( x 2 ) }  

and the result follows. | 

LEMMA 3.2: Let F E .7"- and It be finite then, for the K > 0 of the previous 

lemma, we have that, for all x E Y+ satisfying XS(x ) < # + 1, there is a y E Y+ 

such that X f ( y )  _< X f ( x )  and at  least one of y2 <_ - K  and Y3 >- K holds. 

Proof: Since f ( t )  -o oo as t ~ oo, we can take A such that  

2(it + 1) 
f ( t ) >  1 - F ( 0 ~  f o r t > A .  
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Let  x C Y+ s a t i s f y X f ( x )  < # + 1 .  If x2 < - K  or x3 _> K there is nothing 

to do. Thus  suppose - K  < x2 and xa < K;  then, by the previous l emma,  there 

is a w (1) • Y+ such t h a t  w} 1) -- Xi+2 and X f ( w  (1)) < X f ( x ) .  If w O) <_ - K  

or w~ 1) >_ K we are through.  Otherwise repea t  the process until we reach a 

w (r) • 3; + such tha t  A (r) w i = xi+2r, X f ( w  (r)) _< Xl (X)  and w~ ~) ~ - K  or 

w~ ~) _> K .  Such an r must  be  reached since, for any posit ive integer k >_ A / x l ,  

we have 

/X2k+2j+ 3 
X f ( x )  > f ( k x l ) d F  > (1 - F(x2k+3))2(# + 1)/(1 - F(0) )  

j= l  J X2k-]-2j-F1 

= ( 1 - F ( w ( k ) ) ) 2 ( p + l ) / ( 1 - F ( 0 ) ) > p + l  w h e n w  (k) < K .  | 

LEMMA 3.3: Let F • .T-,  p /inite and (x (n)) be a sequence in y+ such that 

X : ( x  (n)) ~ p, then there is a sequence (y(n)) in y such that X f ( y  (~)) ~ p and 

y(n) __~ y where, for all positive integers i, Yi ¢ O. 

Proo~ By L e m m a s  3.2 and 2.3 we may  take the (x (n)) in the s t a t emen t  to be a 

sequence in y +  such tha t  x (") --* x and x~ n) < - K  or x~ n) _> K for all n. Thus  

at least one of x2 < 0 and x3 > 0 holds. 

If x2 0 then  0 < x3 < co. Define y(~) • 3; + by - (n) - (")  for i > 1, then  : Yi --~ :ci+2 -- 

[ X y ( x ( m )  - X f ( y ( " ) )  _> f (2x~ ~) + Itl) - f (2x~  n) + I t l )df  
(:) 

> - - f (2x3  -4- 1)(F(0)  - F(x(2n))) 

for large enough n. Thus  X f ( y  (n)) _< X f ( x  (n)) + f (2xa  + 1)(F(0)  - V(x~n))) ----, # 

as n ~ cc since F is continuous at  0 and x~ n) ---* x2 = 0. Hence Xf (y (~ ) )  --~ # 

as n ~ oc. Since y~'~) = x~ n) --* x3 > 0 we are th rough  if Y2 = x4 ¢ 0. 

Thus  let Y2 = 0. Then  Yl = x3 and F ( y l )  ¢ 1; fur ther  Y3 is finite. Define 

_(n) . (n) for i > 1; then  z (~) • 3 ; + b y z i  = Y ~ + 2  - 

/o 
X I ( Y  (")) - X f ( z  (")) ~ f(NY~ ~) + Itl) - I (2y~ n) + I t l )df  (:) 

+ + t) - I ( t ) e v  

>__ ly n/I)(F(O)- 
+2Y1 f+(Yl ) (1 - -  )). 
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Since y~ )  --* Yl > 0 and F ( y l )  ¢ 1, the second te rm is bounded away from 

zero as n ~ oc whereas the first t e rm tends to zero as n --* o0 because F is 

continuous at 0 and y~ )  --* 0 and 2y~ n) + ly~ ~)] < 2y3 + [Y21 + 1 for sufficiently 

large n. Hence, for sufficiently large n, Xy(z  (n)) would be str ict ly less than  # 

which is an impossibility. 

Thus we may take x2 ¢ 0. Suppose xl  = 0 = x3 . . . . .  x2k-1 but  x2k+l ¢ 0 

for some positive integer k then  x2k is finite. Consider y(~) E 3;-  given by 

y}n) ~(n) for i > 1, then  
= ~ i + 2 k - - 1  

{,*) 

fo 
~ 2 k - -  i 

X y ( x  {n)) - X f ( y  (n)) _> - f(21x~2)l + t )dF 

(n) "'F" (~) " _> - f ( 2 l x ~ ) l  + x2k_l) ~ tx2k_~) - F(0)) .  

Thus, for sufficiently large n, 

Xf (Y (n)) _< X f ( x  (n)) + Y(21x2kl + 1)(F(x~k)_D -- F(0) )  --* # as n -* oo. 

Hence X f ( y  (n)) p and - (n) --~ Yi -4 xi+zk-1 ¢ 0 for any positive integer i. | 

LEMMA 3.4: Let  F E .~- and # be finite, then there is a sequence (y(n)) in y 

such that X f ( y  (n)) ~ # and y(~) --* y where, for a11 positive integers i, yi ¢ 0. 

Fhrthermore lYi+21 > lY~I for all positive integers i for which x -  < y~ < x +. 

Proo~ Let (x  (~)) be a sequence in y satisfying X f ( x  (n)) --~ # and x (~) --~ x 

as n --* oo. If x~ n) > 0 for an infinite number  of n, the result follows from the 

previous lemma. Hence we may assume tha t  x~ n) < 0 for all n. 

Suppose Xl 0 then x2 is finite. Let y(n) E Y+ be given by - (~) _(n) for 
= Y i  = J ' i + l  

i _> 1; then  

X f ( y ( . ) )  _ X f ( x ( . ) )  _< ~n) -t-It]) - f (I t[)}dF 

_ 9 ~ ( ~ ) ¢  ~ tg~ . (~ )  < "~2 J - ~ 2  + Ix~'ql)(F(O) - F(x~n))) 

_< (2x2 + 1)f '_(2x2 + 1) (F(0)  - F(x~ n)) 

for large enough n. 

Since x~ '~) --* 0 and F is continuous at  0, we have X f ( y  (n)) ~ # and the result 

follows by the previous lemma. 
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Hence let x l  < 0. Suppose x2 = 0 then xl  # x -  and x 3 is finite. Let y(n) E Y -  

be given by y ~ )  -(=) for i > 1, then  :hi+ 2 

X f ( y ( n ) )  - X) (x (~ ) )  _< f x ~ = ) { f ( 2 l x ~ )  I + It[) - f(21x~n)[ + [tl)}dF 
J0  

¢¢ x (~) 

~=o ~:~+~ f(It]) - f ( l t l  + 2lx~'~)l)dF 

_< 2( lx~n)  l -- lx~)Dff_(21x~ n) ] + x~'~))(F(x ('~)) - F(0) )  

- 2lx~)lf'+(Ix~)l)(F(x~) ). 
Since F is continuous at  0, the first t e r m  can be made  arbi t rar i ly  small  by taking 

n large enough. However,  the second t e rm  is s t r ict ly negat ive and bounded  away 

f rom zero as n -* c¢ because x -  < Xl < 0 so we have a contradic t ion to the 

supposi t ion t ha t  X f ( x  (n)) --+ p. 

Hence x2 # 0 and the first pa r t  of the l e m m a  follows. 

Suppose there is a posit ive integer k such tha t  x -  < Yk < x + and Yk+2 = Yk- 

Note  t ha t  this implies t ha t  yk+3 is finite. We shall only t rea t  the case Yk > 0 

as the  case Yk < 0 follows by analogous arguments .  P u t  q = 1 - F(yk)  > 0 

and e = ~lf(2yk)/8. Since f is uniformly continuous in [0, 2sk+3(y) + 1], there 

is a 6 > 0 such tha t  I f(u)  - f (v) l  < ¢ whenever [u - v I < 5 and u, v lie in 

[0, 2sk+3(y)  + 1]. We m a y  clearly suppose 5 < 1. Now choose N so t ha t  y(N) 

satisfies 

X f ( y  (N))  < p + £ / 2 ,  

(~) - y ~ N ) L  < 5 / 4 ,  Yk+2 

f ~ ) - y k l  < 5/4, 

Take z in y defined by 

Zi -~ 

Hence 

F r ( N ) ,  (1 + F(yk) ) /2  > (Yk+2), 

(N) 5/4, Yk+l  -- Yk+l[ < 

I s k ( y  ( N ) )  - s k ( u ) l  < 5 / 4 .  

. (N)  i f i < k ;  Yi 

.(N) i f i > k .  Yi+2 

X f ( z )  - X f ( y  (N)) < Jy(k+~ f (2sk ( z )  + It[) - f ( 2 s k ( y  (N)) + Itl)dF 

x + / .  

+ _J-~) f ( 2 s k + l ( z )  + t) - f ( 2 s k + 3 ( y  (N)) + t )dF  

< ¢(F(y~N_{) F~ (N), ,  f ( 2 y ~ N ) ) ( l _ F i y ( N ) ~  -- -- kYk+l ) ) -  ~ k+2JJ 
< ~  (f(2yk) ~)(1 (N) _ - - - F ( Y k + 2 ) )  <-- --~- 
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Thus Xf  (z) <_ tt - e/2 so we have a contradiction and the lemma follows. | 

THEOREM 3.5: Let F E 9 c-  U 3 c+. Then there is a minimizing standard search 

strategy. 

Proof: We may assume without loss of generality that  F E F - ;  the other case 

is similar mutatis mutandis. Suppose the result is false. Then # < ~ .  By the 

previous lemma we may take a sequence (x (n)) in y such that X f ( x  (n)) ~ p 

and x (n) ~ x where Ixi] # 0 for every positive integer i and Ix;+2] > ]xl] for all 

non-negative integers i for which x -  < xi < x +. Thus we may in a natural way 

consider x as a member o f y .  Let a = min{#+l ,  Xf(x)} .  Then 5 = (a -p )~4  > 0 

and there is a least positive integer M such that 

M--2 fx~+2 t))dF > + 35. 
n ~ l  a x ~  

Clearly xl is finite for i _< M - 1. There is the possibility that XM is infinite; 

when this happens, in the analysis that follows XM is to be interpreted as a real 

number x~4 satisfying 

]X'MI > IXM-2I + 1, IF(X~M) - F(XM)I < 5 /4MC 

and 

E f ( X ( x ,  t))dF + f ( X ( x ,  t))dF > p + 35 
n = - - I  a x n  -2  

while SM(X) is to be interpreted as SM-l(x)  + x ~ .  Hence in all cases SM(X) is 

finite. 

Since f is uniformly continuous in [0, 2SM(X) + 1], there is an e > 0 such that 

I f ( u ) -  f(v)[ < 5/(4M) when Iv -u[  < e and u and v both lie in [0, 2SM(X)+l]. 

We may clearly take e <: min {1, _ 1 2 ~ n / 4 _ 2 { [ x i + 2  - -  xi[} } / 2 .  

Let C = f (2sM(x)  + 1) and take x (N) so that X f ( x  (N)) < # + 5, and, for all 

i < M - 1 ,  
Ix} N) - xl] < E/{4M}, 

and 

IF(x,) - F(x~N))I < 5 / {4MC} when IxlN)l > Ix, I. 
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Note that the first condition implies that 

max{Ixil, Ix g)l} < min{lxi+2], (N) [xi+2]} for i = 0 , . . . , M - 2  

and also that Isr(x(N)) - sr(x)[ < e/2 for r = 1 , 2 , . . . , M -  1. 

f 
X i ~ - 2  

Put I(i, N) = f (X(x ,  t)) -- f ( X ( x  (N), t))dF. 

I f - l < i < M - 2 a n d O < x i < _ x l  N), we have 

xl  N) f 
I(i,  N) < / f(2s~+l(X) + t) - f (2s i_ l (x  (N)) + t)dF 

• I X  i 

f 
X i + 2  

+ f(2si+l(x) + t) - f (2s i+l(x  (N)) + t)dF 
J x i ( N )  

< C(F(xl  N)) - F(xi)) + (F(xi+2) - F(xlN)))5/4M 

< 6/2  

and if - l < i < M - 2 a n d 0 _ < x l  N) < x~, we have 

I 
X i ~ - 2  

I(i, N)  < f(2si+l(x) + t) - f(2si+l(X (N)) + t)dF 
• / : C  i 

<_ (F(xi+2) - F(x i ) )5 /4M <_ 5/4M. 

For - 1  < i < M - 2 and x~ < 0 we have, by analogous arguments, 

~ x~ t)) - t))dF <_ 5/2M. f(X(x, f ( X ( x  (N), 
i + 2  

It follows that 

~2 /xi+2 
f ( X ( x , t ) ) d F  - 5/2 > # + 25. 

311 

This contradiction proves the theorem. | 
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4. U n i f o r m  d i s t r i b u t i o n  

In this section we take positive numbers a and b and consider the uniform distri- 

bution F defined by F'( t )  = 1 / ( b + a )  for all - a  < t < b and F'( t )  = 0 otherwise. 

It will also be assumed in this section that f is differentiable. We will show that 

for this case a minimizing search strategy first visits one of the end-points and 

then the other. Our results therefore generalize those in Section 2 of [7]. How- 

ever, although the statements of our lemmas are very similar to those in [7], our 

methods of proof differ markedly from the ones in that paper. In particular our 

proofs will use some standard properties of convex functions (see [9]). 

For positive numbers x, a and u, let 

/: g(x)  = f ( t ) d t  and ha(u) = g(a + u) - g(u).  

Now 9 is convex because f is increasing. Further 9"(x)  = i f ( x ) .  Hence h i ( u  } = 

f ( a + u ) - f ( u )  > 0 because f is strictly increasing and h~(u) = f ' ( a + u ) - y ( u )  > 

0 since ff is increasing because f is convex. Thus ha is a convex strictly increasing 

function. We will be applying the following result (see [8] p.164) to the functions 

ha and hb for appropriate a and b. 

LEMMA 4.1: I f h  is a convex increasing function, ul  > u2 >__ "-" >_ un, vl >_ v2 >_ 

• .. >__ v~ and 

then 

k k 

Ev _<Eu  
r ~ l  r = l  

for k = l , 2 , . . . , n ,  

~ h ( v ~ )  < ~ h ( u , ) .  
r = l  r ~ l  

We also require the following lemmas. 

LEMMA 4.2: I f  O < a < b, then 

° fo b fo f ( t ) d t  + l ( 2 a + t ) d t  <_ ]o b ]o ° f ( t ) d t  + f (2b  + t)dt. 

Proof: Since a < b, by Lemma 4.1 we have 

ha(a + b) + h~(b) <__ h~(2b) + h~(a). 

Putt ing in terms of g and rearranging we obtain 

9(a) + {9(2a + b) - g(2a)} _< 9(b) + {g(2b + a) - 9(2b)} 

and this is effectively the inequality in the statement of the lemma. 
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LEMMA 4.3: Whenever 0 < a, b < c the following inequality holds: 

ji L o f ( t )d t  + f (2b+t)d t  < f ( t )d t  + f (2a+t )d t  + f (2a+2b+t)dy .  

Proo£" (i) Suppose 0 < a < b < c. Then, by Lemma 4.1, we have 

ha(a + 25 + c) + ha(2b + c) + h~(a + b) > ha(2a + 25) + ha(a + 25) + ha(2b) 

SO 

h~(a + 2b + c) + ha(2b + c) + ha(a + b) + ha(b) > ha(2a ~- 2b) + ha(a + 2b) 

A- ha(2b) A- ha(a). 

Putt ing in terms of g and rearranging we obtain 

g(b) + g(2b + c) - g(2b) < g(a) + g(2a + b) - g(2a) + g(2a + 2b + c) - g(3a + 2b) 

and this is effectively the inequality in the statement of the lemma. 

(ii) Now suppose 0 < b _ a < c. As in [7] the inequality in the statement of the 

lemma follows from Lemma 4.2 with the roles of a and b reversed and the fact 

that  

f(2b + t)dt < f(2a + 2b + t)dt 

which holds because f is strictly increasing. 

The lemma now follows immediately from (i) and (ii). II 

LEMMA 4 . 4 : I f 0  < a < c < b < d, then 

/o /o /o ° /o f ( t )d t  + f (2c  + t)dt < f ( t )d t  + f (2a  + t)dt + f (2a  + 2b + t)dt 

d i "  

+ ]b f (2a  + 2b + 2c+ t)dt. 

Proof: Since 0 < a < c < b < d, it is easy to verify from Lemma 4.1 that 

hb(2a + b + 2c+ d) + hb(a + 2c+ d) + hb(a + b+ c) + hb(a + c) 

>_ hb(2a + 2b + 2c) + hb(a + b + 2c) + hb(2a -17, b) + hb(2c) 

and also that 

h~(a + 2b + 2c) + ha(b + 2c) + ha(2a + 2b) 

<_ h~(a + b + 2c + d) + ha(2c + d) + h~(a + 2b + c). 
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(Note that, in the latter case, we do not know whether or not b + 2c is greater 

than or equal to 2a + b and so we have to check the cases separately.) 

The last inequality gives 

ha(a -t- 2b + 2c) + ha(b + 2c) + ha(2a -t- 2b) + ha(a) 

< ha(a + b + 2c + d) + ha(2c + d) + ha(a + 2b + c) + ha(c). 

From this inequality and the one involving hb we have 

{hb(2a+b+ 2c+ d) + ha(a + b+ 2c + d) + hb(a + 2c+ d) + ha(2e+ d)} 

+{ha(a + 2b+ c) + hb(a + b+ c) + hb(a + c) + ha(c)} 

<{hb(2a + 25 + 2e) + ha(a + 25+ 2c) + hb((a + b + 2c) 

+ ha(b+ 2c) + hb(2C)} + {ha(2a + 2b) + hb(2a + b)} + ha(a). 

Putting in terms of g we obtain 

g(2a + 2b + 2c+ d) - g(2c + d) + g(2a + 2b + c) - g(c) 

> g(2a + 3b+ 2c) - g(2c) +g(3a  + 2b) - g(2a+ b) + g ( 2 a ) -  g(a). 

Thus 

{g(2a + 2b + 2c + d) - g(2a + 3b + 2c)} + {g(2a + 2b + c) - g(3a + 2b)} 

+ {g(2a + b) - g(2a)} + g(a) 

> {g(2  + d) - 9(2c)} + 

which is effectively the inequality in the statement of the lemma. | 

THEOREM 4.5: Let F be the uniform distribution over the finite interval f-a,  b] 

where a and b are positive. 

(i) Ira  > b, then Xf(x)  is minimized by w where w/~rst  goes to b and then 

to -a .  

(ii) If  a <_ b, then Xf(x)  is minimized by w where w first goes to - a  and then 

to b. 

Proo[: By Theorem 3.5 there is a minimizing strategy x in y .  We cannot 

have xl  E ( -a ,b)  and Ix2[ < Ix31, since in that case by either Lemma 4.3(i) 

(if [xll < Ix21) or Lemma 4.3(ii) (if Ix1[ _> Ix21), the substitution of 0 for xl 

would reduce X/(x) .  If xl  C ( -a ,b)  and Ix2I _> Ix31, then by Lemma 4.4, the 

substitution of 0 for xl and x2 would reduce X/(x) .  Thus, in all cases, X/ (x)  is 

not minimized by xl E ( - a ,  b). It follows that xl is one of the end-points and so 

x2 is necessarily the other end-point. By Lemma 4.2, Xl must be the end-point 

with the smaller absolute value and the theorem follows. II 
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5. S k i n n y  d i s t r i b u t i o n s  

In Sect ion 4 we saw tha t ,  when F is the  uniform d i s t r ibu t ion  on a finite interval ,  

there  is a min imiz ing  search s t r a t egy  which t e rmina tes .  On the o ther  hand  it 

was shown in [7] tha t ,  if F is the  t r i angu la r  d i s t r i bu t ion  o11 [ - 1 ,  1] and  f ( t )  = t ~ 

where a > 1, then  every minimiz ing  search s t r a t egy  is non- t e rmina t ing .  In  this  

sect ion we ob ta in  a necessary and sufficient condi t ion  for a compac t  d i s t r i bu t ion  

to have a min imiz ing  search s t r a t egy  t ha t  t e rmina t e s  for the  case when f ( t )  = t ~ 

for a > 1. In  doing so we also ob t a in  a weaker resul t  for the  general  case. We 

require  the  following definit ion.  

Defini t ion:  Let  F be a d i s t r ibu t ion  wi th  a t  least  one of x -  and  x + real. If x -  

is real  we say t ha t  F is s k i n n y  a t  x -  if 

l i m i n f  F ( t ) / ( t  - x - )  = O. 

If x + is real  we say t h a t  F is s k i n n y  a t  x + if 

l iminf (1  - F ( t ) ) / ( x  + - t) = O. 
tTx+ 

If x -  is real  we also say t ha t  F is f a t  a t  x -  if F ( t ) / ( t  - x - )  is bounde d  away 

from 0 for x -  < t < x -  + 1. S imi lar ly  for F is fat  a t  x +. Clear ly  F is fat  a t  x -  

(or x +) if and  only if it  is not  skinny there.  

THEOREM 5.1: Le t  F be c o m p a c t  w i th  s u p p o r t  [a, b], where  a < 0 < b and s k i n n y  

at  bo th  a and  b. T h e n  every  m i n i m i z i n g  search s t r a t e g y  is non - t e rmina t ing .  

Proof:  Let  F be sk inny at  a, and  suppose  t ha t  there  is an  o p t i m a l  search 

s t r a t egy  x wi th  xn+ l  = a and xn+2 = b. For  any a < s < m i n { x n _ l , a / 2 }  

mee t ing  a condi t ion  to  be set below, let  y be defined wi th  yj  = X j  for all  j _< n, 

Yn+l = 8, Yn+2 = b, Yn+3 = a. 

Then  we have 

0 
X ( y ,  t) - X ( x ,  t) = 2(b - s) 

- 2 ( s  - 

if s < t < xn; 
if a < t < s; 

if xn < t < b. 
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Thus, taking D = X f ( x )  - X f ( y ) ,  we have 

D = f(2s~+l(X) + t ) d F ( t )  - ] (2s~+l (x)  + 2a - 2s + t ) d F ( t )  
~ n 

+ f ( 2 ~ n ( x )  - t)dF(t) - I ( 2 ~ ( x )  + 25  - 2~ - t)dF(t) 

Z . - 2 ( b  - s ) I ' ( 2 s ~ ( x )  - 2 s  + 2b - t ) a F ( t )  

> 2 ( s  - a ) l ; ( 2 s ~ ÷ ~ ( x )  + a + x ~ ) ( F ( b )  - F ( z , ~ ) )  

- 2 (b  - ~ ) f ' _ ( 2 S n ( X )  --  3 a  + 2 b ) F ( s )  

> 0  if 

F(S) ~(28n+l (X)  + a + x n ) ( F ( b )  - F ( x ~ ) )  
- - <  
s - a (b - a ) f f _ ( 2 s n ( x )  - 3a + 25) 

Note tha t  2s~+l(x)  + a + xn = 2s~(x) - a + xn >_ - a  > 0 so the right hand side 

is positive. Thus choosing s strictly between a and min{xn_l ,  a / 2 }  so that  the 

inequality holds, we have X I ( x ) - X f  (y) > 0, contrary to the assumed minimali ty 

of Xf (x ) .  Similarly, if F is skinny at b, there can be no optimal  search strategy 

x with x~ = b and x~+l = a. Therefore, if F is skinny at both  a and b, there can 

be no terminating search strategy and the theorem now follows. | 

The particular case of Theorem 5.1 when F is the triangular distribution was 

proved in [7]. The proof of Theorem 6.1 in the next section shows that  when 

f ( t )  = t ~ we have the following stronger result. 

THEOREM 5.2:  Let f ( t )  = t ~ where a >__ 1 and F be c o m p a c t  with s u p p o r t  [a, b] 

where a < 0 < b. T h e n  there is a n o n - t e r m i n a t i n g  minimizing search strategy if 

and on ly  i f  F is s k i n n y  at  bo th  a and b. 

6. Lopsided distributions 

In this section we consider distributions for which precisely one of x -  and x + 

is infinite. For such F and f ( t )  = t ~ where a > 1 we find some necessary and 

some sufficient conditions for the optimal search strategies to be terminating. In 

particular we shall prove that  in order to have a non-terminating opt imal  search 

strategy, the distribution must be skinny at the non-infinite member  of {x - ,  x+}, 

and we shall also show that  this condition is not sufficient. 
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Definition: We say tha t  a distr ibution F is l o p s i d e d  to the right if there is a 

real a such tha t  F(a) = 0 and 0 < F(t)  < 1 for all t > a. We define F as lopsided 

to the left in an analogous manner.  

The  linear search problem for a dis tr ibut ion F lopsided to the right is interest- 

ing only if a < 0, with similar comments  applying to the left. We will normalize 

all distr ibutions lopsided to the right by first moving them to the right a distance 

la[ and then rescaling them so tha t  the s tar t ing point  of the search is at 1: 

F(t)  = F(a - at). 

Those lopsided to the left are t reated similarly. We will use Sn(x)  to denote 

~ _ ~  I1 - xil for all integers n and G(t) for 1 - F(t)  for all real t. 

THEOREM 6.1: I f  f ( t )  = t ~ for all t > 0 where a > 1, F(0)  = 0, F(1)  < 1 

and F( t )  > 0 for all t > O, F is fat at O, and f ~  it - l l~dF(t )  < ~ ,  then, for 

the search problem starting a~ 1, every search strategy x minimizing X~(x)  is 

terminating. 

Proo~ Suppose, contrary  to the assertion, tha t  F satisfies the hypotheses and 

tha t  x is a non- terminat ing  search s t ra tegy which minimizes X~(x) .  

Since F is fat at O, there are M > 0 and 6 > 0 such tha t  F ( t ) / t  > M for 

0 < t < & Pu t  e = M / ( 2 a ) .  Now 

oo > X ~ ( x )  = ( 2 S j ( x )  + It - ll)~dF(t). 
j ~ _ _  . -  

T h u s  we can find an n such tha t  

J (2S~(x)  + It - < ~, 

x . - x n + ,  > 1 and X n + l < 6 .  

Notice tha t  xn > 1 and S~+l(x)  > 1. I t  follows tha t  

fx°~(2Sn+l(X) + t - 1 ) ~ d F ( t )  < ~ 

n 

and 

(2Sn+l(x)  + 2 + t - 1)~dF(t)  < 
n n 

2 a ( 2 S n + l ( X )  Jr  t - -  1)~dF(t) < 2~e. 
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Define the  search s t r a t egy  y by  

yj  -~ x j  for all  j _< n, Yn+l = 0, Yn+2 = o(). 

Then  

X , ( y )  -- (2S j (x )  + It - l l ) " d F ( t  ) 
j = _ _ ~ l  X j - - 1  

~ x ~ - i  jfxoo + (2Sn(x)  + 1 - t ) ~ d F ( t )  + (2S,~(x) + 2 + t - 1 )~dF( t ) .  
n 

Thus  

X o ( x )  - X ~ ( y )  > ( 2 S ~ ( x )  + 2 - 2 x ~ ÷ 1  + t - 1)"aF(t )  
n 

- ( 2 S ~ ( x )  + 2 + t - 1 ) ~ e F ( t )  
n 

f 
X n - ~ l  

+ (2Sn(x)  + 2xn+~ - 2xn+l  + 1 - t ) " d F ( t )  
Jo 

- - F °÷1 (2s~(x )  + 1 - t )"dF( t ) .  
do 

We see t h a t  for each t > x,~, 

(2Sn(x)  + 2 + t - 1 ) ~ - ( 2 S n ( x )  + 2(1 - x n + l )  + t - 1) ~ 

= 2axn+l (2Sn(X)  + 2 + t - 1 - 2h(t)x,~+l) (~-1 

< 2aXn+l(2Sn(X)  -b 2 + t -- 1) a - 1  

for some value of h(t)  between 0 and 1. Thus,  

/ ~ ( 2 S n ( x )  + 2 + t 1)" - ( eSn(x)  + 2(1 X , + l )  + t -  1 ) " d F ( t )  
n 

< 2O~Xn+l (2Sn(x)  + 2 + t - 1 ) c ' - t d f ( t )  
n 

< 2c~xn+~ (2Sn(x) + 2 + t - 1)~aF(t) 
n 

< 2c~+lcteXn+l = 2~MXn+l. 

On the  o ther  hand  

0 z~+l (2Sn(X) -J- 2Xn+2 -- 2Xn+l + 1 -- t) ~ -- (2Sn(x)  + 1 - t ) ~ d F ( t )  

[ X n - ~ - i  

> 2"dF( t )  = 2 " F ( x , + l ) .  
J0 

I t  follows t h a t  X ~ ( x )  - X ~ ( y )  > 0 if F ( x n + l )  > Mx,~+l ,  which follows f rom 

xn+l  < 5 and  the  defini t ions of M and 5. | 
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T H E O R E M  6 . 2 :  I f  p > O, F is a (normalized) distribution lopsided to the right, 

f ( t ) = t for all t, 

l im  inf  F( t ) / t  I+p < 1 a n d  t l+l /Pa(t)  --* 0 as  t + co, 
t ~ 0  

then every minimizing search s t r a t e g y  is non-terminating. 

Proof." Suppose ,  c o n t r a r y  to  the  d e m o n s t r a n d u m ,  t h a t  x is a m i n i m i z i n g  search 

s t r a t e g y  t h a t  t e r m i n a t e s .  We m a y  a s sume  xi ~ {0, oc} for all  i _< n,  Xn+l  = 0 

a n d  xn+2 = 00. Define y by  yj = xj for j = 1 , . . . , n ,  yn+3 = 0 a n d  Yn+4 = OO, 
n 

w i th  Y~+I a n d  Y~+2 st i l l  to be  defined.  P u t  S = ~ j = _ ~  [xj - 1[. T h e n  

/2' /7 X ( x )  - X ( y )  = 2S  + (1 - t )dF(t)  + 2S + 2 + (t - 1)dF(t) 
n 

~y xn-1 
- 2S + (1 - t )dF(t)  

n+l ~x yn+2 
- 2 S  + 2 ( 1  - Y , ~ + I )  + ( t  - 1)dF 

Xn 

[ Y~+I 

- 2S + 2(y~+2 - Y~+I) + (1 - t )dF(t)  
JO 

- -  2S + 2(yn+2 -- Yn+l) -t- 2 + (t -- 1)dF 
n+2 

f ~ .  Y~+2 
Yn+X 2(yn+2 Yn+l)dF(t) + 2 - 2(1 - Yn+l)dF 

aO x~ 

/7 - 2(yn+2 - yn+l)dF 

= 2 y n + l ( G ( x n )  - G ( y n + 2 ) )  - 2(yn+2  -- Y n + l ) F ( y n + l )  

- 2(ynnt_ 2 -- Y n + l ) a ( y n q _ 2 )  

= yn+lG(Zn) - 2(yn+2 -- Yn+l)F(yn+l) + Yn+IG(Zn) 

- 2y~+2G(y~+2) 

> 0  if 

Y n + l  > 

th is  las t  occu r r i n g  if 

_ _  C(x ) 2yn+2G(y~+2) a n d  F ( y ~ + I ) < _  

G(xn) Yn+l 2yn+2 ' 

l+p  p 
F(yn+l) < Y~+I a n d  G(x~)/(2y~+2) > Y,~+I" 
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We note tha t  if Yn+2 is chosen large enough, then 

G(xn) I+I/p > (2yn+2)l+l/PG(yn+2), 

which gives us 

2yn+2G(yn+2) (G(xn) ~ lip 
G(xn ) < \2~+2 ] " 

Fur thermore  as Y,~+2 increases, these limits decrease and there are infinitely many  

values of Yn+2 for which we have Y~+I lying between 

2yn+2G(yn+2)/G(Xn) a n d  (G(Xn)/(2yn+2))1/p 

l+p Choosing those values for Yn+2 and Yn+l, we see tha t  for which F(y,~+I) < Yn+l- 

X I ( y )  < Xl(X),  so tha t  x cannot  be minimal. The theorem now follows. | 

COROLLARY 6.3: I f  p > 0, F is a (normalized) distr ibution lopsided to the right, 

f ( t )  -- t for all t, l i m t ~ o F ( t ) / t  I+p < 1, and liminft-~oo t l+UPG(t)  = O, then 

every opt imal  search s t ra tegy  is non-terminating.  

Proo~ Same proof, mutatis  mutandis.  | 

Using the Corollary with p = 2 it is easy to see that ,  for the lopsided distribu- 

t ion given by F( t )  = e x p ( - 1 / t  2) for all t > 0, every opt imal  search s t ra tegy  is 

non- terminat ing  when f ( t )  = t for all t. 

THEOREM 6.4: f f  f ( t )  = t for all t, F is a (normalized) distr ibution lopsided 

to the right and x is a non- terminat ing  opt imal  search strategy, then for every 

x~ > 1, we have both 

xnT1G(zn) > ( X n + 2 -  Xn+l)F(Xn+l) 

and 

P r o o f  

Xn+lC(Xn) > (Xn+2 --X~+3)G(X~+2). 

Define y = { . . . ,  x~, 0, co} where xn > 1. Then  set u = Xn+l, v -- x~+2 
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m 
and w = Xn+3. Taking  S m =  ~ j = _ ~  ]xj - 11 and D = X l ( X  ) - -  X I ( y ) ,  we have 

•fuXn 
-- 1 ~V  

D = 2S,, + (1 - t ) d F ( t )  + 2S~ + 2(1 - u)  + (t - 1 ) d F ( t )  
n 

+ 2 s n  + 2(~ - ~)  + (1 - t ) dF( t )  

Xn+4 
+ 2Sn + 2 ( v -  u) + 2(1 - w)  + (t - 1 ) d F ( t )  

J v  

-~- k f.~ xj+l 1]dE(t) ~ 0 X ~ - -  1 2~-,~n -~ - 2Sj + It - - (1 - t ) d F ( t )  
j = n + 4 '  xj-1 

- 2 S n  + 2 + ( t  --  1 ) d E ( t )  
n 

> 2S,~ + (1 - t ) d F ( t )  + 2S n + 2(1 - u)  + (t - 1 ) d F ( t )  
n 

+ 2 S n  + 2 ( V  --  ~ )  + (1  - -  t)dF(t) 

/7 + 2S~ + 2 ( v -  u) + 2(1 - w)  + ( t -  1 ) d F ( t )  

/7 - -  2 S  n + (1 - t ) d F ( t )  - 2S~ + 2 + (t - 1 ) d F ( t )  

/o ° /o = 2s~ + 2W - ~) + (1 - t ) dY ( t )  - 2 S n  + (1 - t ) d Y ( t )  

- 2 u d F ( t )  - 2S~ + 2 + (t - 1 ) d F ( t )  
n 

/7 + 2S,~ + 2(v - u) + 2(1 - w)  + (t - 1 ) d F ( t )  

/7 = 2 ( v  - ~ ) F ( ~ )  - 2 ~ ( a ¢ ~ )  - a(v)) + 2 ( v  - ~ )  - 2 ~ a Y ( t )  

= 2 ( ~  - ~ ) F ( ~ )  + 2 ( v  - ~ ) a ( v )  - 2~a¢~) 

> 0  if 

2 u G ( x n )  <_ max{2(v  - w ) G ( v ) ,  2(v - u ) F ( u ) } ,  

i.e. unless b o t h  u C ( x , )  > (v - w ) a ( v )  and u C ( x n )  > (v - u ) F ( u ) .  | 

We now provide  an example  of a lops ided d i s t r ibu t ion  which is sk inny  a t  0 bu t  

has no n o n - t e r m i n a t i n g  op t ima l  search s t ra tegy.  
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Example: Let f ( t )  = t for all t and  define F by 

t3/2/2 if 0 < t < 1; 
F(t) 

1 - t - 3 / 2 / 2  i f t > l .  

Then  F'(t)  = 3t-~/2/4 for t > 1, so tha t  # < c~. Let  x be an op t ima l  search 

s t r a t egy  and choose n so t ha t  x ,  > 2. Define u = Xn+l, v = x~+2 and w = x~+3 

as before.  Of the  two inequal i t ies  in Theorem 6.4 the  first gives 

u x ; 3 / 2 / 2  > (v - 

while the  second gives 

ux~3/2/2 > (v - w)v-3/2/2. 

Since v > 2 and 1 > u > w, v -  u and v -  w are bo th  bigger  t han  v/2, so t ha t  

the  inequal i t ies  assure 

UXn 3/2 > U3/2V/2 and  ux~ 3/2 > v-1/2/2. 

These give 2 > x3/2ul/2v and  2uvl/2x~ 3/2 > 1. 

Combining ,  

3 X 4uv 1/2 > x~ul/2v, or 4 Xv/~-~+l > Xn X~/rX~n~2 

which is mani fes t ly  false since x ,+2  > x .  > 2. 
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