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ABSTRACT
A major part of the paper deals with the linear search problem in which the
cost function is a strictly increasing convex function f satisfying f(0) = 0.
It is shown that a number of results previously established for the case
f(t) = t® can be extended to the convex case; in particular a sufficient
condition for the existence of a minimizing search strategy of a simple
form is obtained for the convex case. Numerous results are obtained on the
existence or otherwise of terminating and non-terminating optimal search

strategies for cost functions already occurring in the literature.

1. Introduction and Notation
In a sequence of papers [1-7] spanning nearly thirty years, one of the authors
(often with the help of co-authors) has investigated the following linear search

problem.

A point on the real line is selected by means of a probability distribution F.
The search for the point starts at zero and is made by a continuous motion with

constant speed 1. The aim of the searcher is to minimize the expected cost where
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the cost is a function of the time taken to locate the point or equivalently the

path length required to find the point.

In the earlier papers, the identity function was used for the cost but, in later
papers, the analysis was generalized to cover the case when the cost is the ath
power of the path length where o« > 1. Since the function f(t) = ¢* for ¢t > 0
and o > 1 is a special case of a convex function, it is natural to consider whether
analogous results can be obtained in a more general context. The purpose of this
article is to show that a number of the results can be generalized to the case when
the cost function is taken to be a strictly increasing convex function f satisfying
f(0) = 0. For the remainder of the paper f will be used solely to denote
such a function. Since f is convex, its derivatives from the right and from the
left always exist and they will be denoted by f and f_ respectively. In Section 3
we obtain a sufficient condition for the existence of a minimizing search strategy
of a simple form while in Section 4 we show that, for the uniform distribution on a
compact interval, the minimizing search strategy travels directly to one end-point
and then directly to the other. The main result of Section 5 gives a necessary and
sufficient condition for a distribution on a compact interval to have a minimizing
search strategy which is non-terminating for the ath power case. Section 6 deals
with a particular class of distributions called lopsided distributions and obtains
various results on minimizing search strategies for these distributions.

To present the problem more mathematically we need to introduce some

notation.
For a probability distribution F let z+ = z*(F) = sup{t: F(t) < 1} and
= = g7 (F) = inf{t: F(¢) > 0}; we allow the possibilities 27 = —oc and

zt = 00. The linear search problem is only of interest when 2= < 0 < z* so we
shall always assume that these inequalities hold. Further, as in previous papers
on the topic and for the reasons given in them, we shall also assume that the
probability functions F(¢) under consideration are continuous on the right for
t > 0 and continuous on the left for ¢ < 0. We denote the set of such functions
by F. A subset of 7 which plays an important role in the theory is one where
the members are such that at least one of £~(0) and F*(0) is finite where

F~(0)= 1imT%up(F(t) — F(0))/t and F*(0) = lintlls(,)up(F(t) - F(0))/t.

t

We will denote the subset of F for which F~(0) is finite by 7~ and the subset
for which F*(0) is finite by F*.
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A generalized search strategy is a doubly-infinite sequence x = {x;}2_

satisfying
LT L9 X L0 L1 ST S0

The set of all such strategies is denoted by &X'. It is clear that if there is an n such
that z,, and z,4, are z~ and =7 in either order then the value of the expected
cost of locating the point is the same regardless of the values of succeeding entries.
We shall allow z,, to be 2~ or 7 even when they are infinite. When there is an
integer i such that z; = = or £ a strategy is said to be terminating; otherwise
it is said to be non-terminating. Intuitively by choosing x € X’ the searcher
employs a path in which, for each integer r, he goes from z, to z, ;.

If x € X and there is an integer m such that x; = 0 for all i < m, we say that
x is a standard search strategy. Clearly, for any standard search strategy x,
the subscripts can be renumbered so that the first non-zero term is ;. We put

Yr={xeX:iz;=0fori<0, 2,1 > 0 and z9; < 0 for i > 0},

YV ={x€X:ixz;=0fori<0, z9;-1 < 0 and zg; > 0 for ¢ > 0}

and

y=ytuy .

For x € X and a real number ¢, X (x, ) is defined as follows: for ¢ lying between
Tp-1 and Tni1, X(X,t) = [t| + 2s,(x) where sp(x) = > 1 |z;|- Thus X (x,t)

is the path length taken to reach the point ¢ when using x.
For x € X the expected cost function X(x) is then defined by

/_ T X (%, 0)dF ().

A trivial argument shows that infyex X(x) = infxey Xs(z) and in future we
shall use 1 to denote either of these expressions. If there is no search strategy for
which X is finite we adopt the convention that p is 0o and every search strategy
is minimizing.
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2. Preliminary results

In the particular case when f is the ath power of the path length with a > 1, i
is finite whenever [ f(|t|)dF is finite. That this does not carry over directly to
our more general situation is easily seen by taking f(t) = exp(¢?) and F the sym-
metric  distribution  having  density function p of the form
p(t) = kexp(—t% —t) for t > 0 and appropriate k. However the following lemma
shows that there is a result of the same form for the general case.

LEMMA 2.1: If/ F(91tdF(t) < oo, then p is finite. Further we have

ws [ rouare.

Proof: Straightforward generalization of the proof for the case f(¢) = ¢ in [1].
|

Remark 2.2: If 1 and 2~ are both finite, then p is finite.
Proof: Trivial.

LEMMA 2.3: Let F € F, u be finite and (x(™)) a sequence in ) such that
X;(x™)) — y. Then there is a subsequence (y™) of (x(™)) such that one of the
following holds:
(a) There exists a sequence (y;) of real numbers such that yi(") — y; aS T — 00
for all positive integers 1.
(B) There is a positive integer k and real numbers y; (¢ = 1,...,k — 1) such
thatz~ <y; <zt fori <k—1,ys_1 € {z7,z+} and ygn) — y;asn — 0o
fori <k-1.

Proof: Let (x(™) be a sequence in ) such that X;(x®™)) — p asn — co. By
taking a subsequence we may assume X f(x(“)) < p+1 for all n. Two cases arise.
(@) For all positive integers ¢ there is a b; such that x§") € [=b;, b;] for all n.
In this case the result follows via a standard diagonalization procedure.
(8) There is a positive integer 7 such that, for all b, there is an n such that
|z£")| > b. Let k be the smallest integer ¢ for which this holds. Then, by taking a
subsequence, we may assume that (x(™) also satisfies xE") -z for0<i<k~1.
We show that zx_; =z~ or zt.

Firstly suppose a:scn_)l <0 and z_; # x~. Then, by taking a subsequence, we
may assume that F(xfcn_)l) > F(zk_1)/2> 0for alln. Put A =2(u+1)/F(xr-1)
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and take. B such that f(¢) > A for t > B, then there is a positive integer N such
that :riN) > B. We then have

2N (N)

™) s [T pxnars [ fee™)aE > 2B FEM)
f k k—1

— oo —oo

> AF@EM) = 2(u+ 1)

and we have a contradiction. Hence, if xfcn_)l <0,wehave xp_1 =z.

Similar arguments show that z,_; = 1 when m,(:_)l > 0. [ ]

When () or () of Lemma 2.3 are satisfied by a sequence (y() in } we write
y®™ —y.

3. Sufficient conditions for a minimizing standard search strategy

In this section it is shown that there is always a minimizing standard search
strategy when F € F~ U F*. The corresponding result for the case when f(t) =
t* where a > 1 and 27, 2% are both infinite is given by Theorem 9 in [4]. The
proof of that theorem used a previous lemma (Lemma 7) which in turn appealed
to a previous lemma (Lemma 4). Unfortunately Lemma 4 cannot be generalized

to the present context as the following example shows.

Example: Let f(t) = exp(t?) and F be the discrete probability distribution
which, for an appropriate k, has probabilities kj~2exp{—(3.27"1 — 2)?} at the

points (—2)’7! for j = 1,2,.... Then, for y € Y defined by y; = (—2)t! for
1i=1,2,..., we have
Xi(y)=kY i i< o0
j=1

but, for 0 < 7 < 1,

/_Oo F(Xp(y,t) +m)dF(t) = kY i~ exp{n(3.277" - 2) + 7%}

=1
which diverges.

LEMMA 3.1: Let F € F~. Then there is a K > 0 satisfying 2F(K) < 1 + F(0)
such that, whenever x € Y+ and 9,23 € (—K,K), we have X;(y) < Xy(x)
where y € V¥ is given by y; = T;4o.
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Proof: Since F € F~ there is a positive number D such that F~(0) < D.
Choose K > 0 such that

K < (1/D)F(-K),
2F(K) <1+ F(0),
K < min{z*, |z7|}
and
FO)-F(t) < (-t)D forall — K <t<0.

(Note that the first and second inequalities can be satisfied for arbitrarily small
values of K since 0 < F(0) < 1 and F is continuous at 0 while the fourth can be
satisfied because F~(0) < D.)

Let x € Yt with z; < % and z2 > x~. Define y € Yt by y; = ;45 then

Ds(x,y) = Xs(x) — X;(y)

(oo}

= Z /M+3 F(2s2:40(x) + 1) — f(289;42(%X) + t — 221 + 222)dF(1)

2i41

N / St +221) — F(It] + 225)dF (1)

T23

+3 FUE 4 2520101(x)) — FE] + 282i41(x) — 221 + 2x5)dF

> f(2x1 — 222)(1 — F(z1)) — 2(x3 — 1) fL (223 — 22)(F(0) — F(x2))
+ 2(x1 — x2) f (223 — 22) F(z2)

> 2fL (223 — 22){(—z2) F(22) — (23 — 21)(F(0) — F(z2))}.
Now, for — K < z9 and z3 < K,

(—z2)F(zg) > (—x9)F(—K) > —29DK > {F(0) — F(z9)} K

> (23 — 21){F(0) - F(z2}}

and the result follows. |
LEMMA 3.2: Let F € F~ and u be finite then, for the K > O of the previous

lemma, we have that, for all x € Y7 satisfying X¢(x) < p+1, thereisay € Y+
such that X(y) < Xf(x) and at least one of yo < —~K and y3 > K holds.

Proof: Since f{t) — oo as t — 0o, we can take A such that

2(p+1)

f()>1—_—1—7(—0) fort > A.
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Let x € V¥ satisfy X(x) < p+ 1. If 2 < —K or z3 > K there is nothing
to do. Thus suppose —K < x5 and z3 < K; then, by the previous lemma, there
is a wit) € Yt such that wgl) = ;42 and X (w)) < X (x). If w2l) < -K

gl) > K we are through. Otherwise repeat the process until we reach a

w() ¢ Yt such that w}r) = Tiyor, Xp(w®) < X;(x) and wér) < —-K or
()
w3

or w

> K. Such an r must be reached since, for any positive integer k > A/x;,
we have

Toh+2j+3

X0 2% / F(ka1)dF > (1~ F(zaays)2(0 +1)/(1 = F(0))

i=1 L2k 42541

=(1-Fw)2(u+1)/0-F0)>p+1 when wl® < K.

LEMMA 3.3: Let F € F~, u finite and (x(®) be a sequence in Y+ such that
X;(x™)) — p, then there is a sequence (y™) in Y such that X ;(y™) — u and
y(®) — y where, for all positive integers i, y; # 0.

Proof: By Lemmas 3.2 and 2.3 we may take the (x(®)) in the statement to be a
sequence in Yt such that x™ — x and xg") <-Kor :rgn) > K for all n. Thus
at least one of x9 < 0 and x3 > 0 holds.

If £ = 0 then 0 < 23 < 0o. Define y® € Y+ by y = xf+)2 for 2 > 1, then

0
Xy(x™) = Xy (y™) 2 / o, Fe 1) = f(228Y + Jt)dF
> ~f(223 +1)(F(0) ~ F(z5")

for large enough n. Thus X;(y™) < X;(x™) + f(2z3+1)(F(0) — F(z{)) = 1
as n — oo since F is continuous at 0 and xg") — x5 = 0. Hence X;(y™) —
as n — oo. Since y:(l") = :Egn) — x3 > 0 we are through if y3 = x4 # 0.

Thus let y2 = 0. Then y; = z3 and F(y;) # 1; further ys is finite. Define

z(® ¢ Y+ by zf —y+)2 for ¢ > 1; then

0
X5 (y®) - X;(z™) > / £ 4 1t]) — 2 + [t)dF
Y

(n)
2

f(zy{” +1) - f(t)dF

y1

> (28" + WD (F(0) - FuM))
+2y1 1™ - Fy™M)),
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Since y§"’ — y; > 0 and F(y;) # 1, the second term is bounded away from

zero as n — oo whereas the first term tends to zero as n — oo because F is
continuous at 0 and g™ — 0 and 2y{™ + ly$™| < 2u3 + lyo| + 1 for sufficiently
large n. Hence, for sufficiently large n, X;(2(®) would be strictly less than p
which is an impossibility.

Thus we may take x3 # 0. Suppose r; =0 =23 = -+ = Zor—1 but T9p41 #0
for some positive integer k then g is finite. Consider y®™) € Y~ given by

yf") = xgi)%_l for ¢ > 1, then

Ié’;)—l
Xp(x®) = X, (y®) > - /0 F(21a)] + ydF

> — £ + 2 ) (F @) - F(0)).

Thus, for sufficiently large n,
Xp(y™) < Xp(x®) + f(2lwak] + D(F () — F(0)) = pas n — co.

Hence Xf(y(“)) — 1 and yf") — Ti4ok-1 7 0 for any positive integer 1. |

LEMMA 3.4: Let F € F~ and p be finite, then there is a sequence (y(™) in Y
such that X;(y™) — u and y® — y where, for all positive integers 1, y; # 0.
Furthermore |yi42| > |y;| for all positive integers i for which x~ < y; < x%.

Proof: Let (x(™) be a sequence in Y satisfying X ;(x®™) — p and x® — x
as n — oo. If a:g") > 0 for an infinite number of n, the result follows from the
previous lemma. Hence we may assume that x&") < 0 for all n.

Suppose z; = 0 then x5 is finite. Let y™) € Y+ be given by yf") = :vgi)l for

1 > 1; then

Xpy™) - Xy ) < [ (e +1H) - £(eD}aF

< 220§ (225 + |2 ))(F(0) - F(zM))
< (225 + 1) fL (225 + 1)(F(0) — F(z{™)

for large enough n.
Since :cg") — 0 and F is continuous at 0, we have X ;(y(®) — p and the result

follows by the previous lemma.
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Hence let 1 < 0. Suppose x5 = 0 then x; # =~ and 3 is finite. Let y® ey~
be given by yf”) = xfig for ¢ > 1, then

(n)

Xi(y™) - Xp(x™) < / {2+ 1) — F212z™| + [t)}aF

S
B3 [ A 500+ 2
i=0v?%

2i+3
< 2(ja” | — 217 DAL a5 + 25V)F ) - F(0))
= 202{V 4 (12 D (F (™).

Since F' is continuous at 0, the first term can be made arbitrarily small by taking
n large enough. However, the second term is strictly negative and bounded away
from zero as n — oo because =~ < x1 < 0 so we have a contradiction to the
supposition that X ;(x(™) — p.

Hence x5 # 0 and the first part of the lemma follows.

Suppose there is a positive integer k such that = < y, < % and yry2 = Yk-
Note that this implies that yr43 is finite. We shall only treat the case y, > 0
as the case g, < 0 follows by analogous arguments. Put n = 1 — F(y,) > 0
and € = 7f(2yx)/8. Since f is uniformly continuous in [0, 2sk43(y) + 1], there
is a § > 0 such that {f(u) — f(v)| < € whenever {u —v| < § and u, v lie in
[0, 2sk43(y) + 1]. We may clearly suppose § < 1. Now choose N so that y(™)

satisfies
Xry™) < p+e/2, (1+ F(ye))/2 > F(uh),
N N
i) — uV| < 6/4, i) — wksal < 6/4,
™ — il < 6/4, s (™) — se(w)l < 8/4.
Take z in Y defined by
yl(N) ifi < k;
Z = (N)  .p .
Yips 22>k
Hence
™
Xs(@) = X, ™) < [ F2su(a) +1t) - Fsuy®™) + e aF
Ye41
x+
+ [, Fska(a) +1) = F(25esaly™) + )aF
Yeqo

< e(F™) - P - £ei™) (1 - Fh))
< e— (f(2ye) — )1 - F(y)) < —e.
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Thus X¢(z) < p — €/2 so we have a contradiction and the lemma follows. ]

THEOREM 3.5: Let F € F~ U F*. Then there is a minimizing standard search
strategy.

Proof: We may assume without loss of generality that ' € F~; the other case
is similar mutatis mutandis. Suppose the result is false. Then p < co. By the
previous lemma we may take a sequence (x™) in Y such that X;(x(™) — p
and x( — x where |z;| # 0 for every positive integer 7 and |z;42| > |z;| for all
non-negative integers ¢ for which £~ < z; < %. Thus we may in a natural way
consider x as a member of J. Let & = min{u+1, X(x)}. Then § = (a—p)/4 >0
and there is a least positive integer M such that

M-=-2

2

n=-—1

/ T (X 1)dF| > i+ 36,

n

Clearly z; is finite for # < M — 1. There is the possibility that xas is infinite;
when this happens, in the analysis that follows x s is to be interpreted as a real

number z', satisfying

1| > |lzar—z] +1, |F(zhy) — Flzar)] < 6/4MC

and M3 - "
> / f(X(x, t))dFl + / F(X(x,t))dF| > u+ 36
n=-—1 Tn TM—2

while spr(x) is to be interpreted as sy—1(x) + z,. Hence in all cases sp(x) is
finite.

Since f is uniformly continuous in [0, 2sp(x) + 1|, there is an € > 0 such that
|F(u)— f(v)| < 6/(4M) when |v—u| < € and u and v both lie in [0, 25 (z) +1].

We may clearly take ¢ < min {1, _lsr?sl%_z{lxwg -z} }/2.

Let C = f(2spm(x) + 1) and take x™) so that X(x™) < p + 6, and, for all
i<M-1,
2" ~ 1] < /{4M}),

and
|F(z;) — Fz{™M)| < 6/{4MC} when |z{™M| > |ail.
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Note that the first condition implies that
max{[z:|, [z} < min{|zisa], [¢2)]}  fori=0,...,M -2

and also that |s,(x™) —s.(x)| < ¢/2for r =1,2,...,M — 1.
Tif42
Put I(i,N) = / F(X(x,1) = f(X(x™N,1)dF.

i

If—lgiSM—QandO<xigxl(N),wehave

™

I(i, N) < /I F2sig1(x) +1) — f(28i1(x™) + t)dF

i

- /ziﬂ) F(2sip1(x) + 1) — f(28541(xN)) + t)dF

< C(F<x;<N>> — F(:)) + (F(iga) — F(z{™M))6/4M
<6/2M

andif—lSiSM—ZandOngN)<xi,wehave

I(i,N) < /MJr2 F@sipr(x) +8) — f(25041(xMN)) + t)aF

<(Flziy2) — F(2:))6/4M < 6/4M.

For -1 <i < M — 2 and z; < 0 we have, by analogous arguments,
| a0y - 1, 0)dF < /20
Tit2

It follows that

M-

Tit

Xy (x™) >

f(X (x™ t))dF'

Z

J)1+2
/ X(x, t))dF~—6/2>u+26.

This contradiction proves the theorem. |
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4. Uniform distribution

In this section we take positive numbers a and b and consider the uniform distri-
bution F defined by F'(t) = 1/(b+a) for all —a < t < b and F'(t) = 0 otherwise.
It will also be assumed in this section that f is differentiable. We will show that
for this case a minimizing search strategy first visits one of the end-points and
then the other. Our results therefore generalize those in Section 2 of [7]. How-
ever, although the statements of our lemmas are very similar to those in [7], our
methods of proof differ markedly from the ones in that paper. In particular our
proofs will use some standard properties of convex functions (see [9]).
For positive numbers x, a and u, let

glz) = /Ow f()dt and h,(u) = gla+ u) — g(u).

Now g is convex because f is increasing. Further ¢"(z) = f'(z). Hence b/ (u) =
fla+u)— f(u) > 0 because f is strictly increasing and b/ (u) = f'(a+u)— f'(u) >
0 since f' is increasing because f is convex. Thus k, is a convex strictly increasing
function. We will be applying the following result (see [8] p.164) to the functions
h, and hy, for appropriate a and b.

LeMMA 4.1: Ifh is a convex increasing function, uy > Ug > -+ > Uy, ¥1 > Vg >

--- >, and
k
ZUT < Zur fork=1,2,...,n,
r=1 r=1
then . N
h(ve) < h(uy).
r=1 r=1

We also require the following lemmas.

LEMMA 4.2: If0 < a < b, then

/a f(t)ydt + /b f2a+t)dt < /bf(t)dt + /a f(2b+ t)dt.
Proof: Si(;lce a < b, by iemma 4.1 we haveo i
ho(a +b) + ha(b) < he(2b) + ho(a).
Putting in terms of ¢ and rearranging we obtain
g9(a) + {9(2a + b) — g(2a)} < g(b) + {g(2b + a) — g(2b)}

and this is effectively the inequality in the statement of the lemma. |
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LEMMA 4.3: Whenever 0 < a,b < ¢ the following inequality holds:

b c a b c
dt d d b .
/0 f(t)dt+/0 F2b+t)dt < /0 (@ t+/0 f(2a+t) t+/a f(2a+2b+1t)dy

Proof: (i) Suppose 0 < a < b < ¢. Then, by Lemma 4.1, we have
ho(a + 26+ ¢) + ha(2b+ ¢) + hala 4+ b) > he(2a + 2b) + hy(a + 2b) + hy(2b)

SO

ha(a+2b+¢) + ha(26+ ¢) + hala + b) + ha(b) > ha(2a + 2b) + ho{a + 2b)
+ ha(2b) + hg(a).

Putting in terms of g and rearranging we obtain
g(b) + g(2b+ ¢) — g(2b) < g(a)+ g(2a + b) — g(2a) + g(2a +2b + ¢) — g(3a + 2b)

and this is effectively the inequality in the statement of the lemma.

(ii) Now suppose 0 < b < a < ¢. As in [7] the inequality in the statement of the
lemma follows from Lemma 4.2 with the roles of a and b reversed and the fact
that

/wf@b+tMt<./Cf@a+2b+tMt

which holds because f is strictly increasing.
The lemma now follows immediately from (i) and (ii). |

LEMMA 4.4: If0<a < c<b<d, then

c d a b c
d d d 2 d b d
Afwt+éfmwnt<Afmt+Aﬂa+ﬂtﬁAﬂm+z+wt

d
+/ f(2a + 2b+ 2c + t)dt.
b
Proof: Since 0 < a < ¢ < b<d, it is easy to verify from Lemma 4.1 that

hs(2a + b+ 2c+d) + hp(a +2¢+ d) + hp(a+ b+ c) + hp(a + ¢)
> hy(2a + 2b+ 2¢) + ho(a + b + 2¢) + he(2a + b) + hs(2¢)
and also that

haola+ 2b 4+ 2¢) 4+ ho(b + 2¢) + ho(2a + 2b)
<hola+b+2c+d)+ ho(2¢+ d) + ho(a+ 2b+ ¢).
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{Note that, in the latter case, we do not know whether or not b + 2¢ is greater
than or equal to 2a + b and so we have to check the cases separately.)

The last inequality gives

ho(a+ 2b+2¢) + ho(b+ 2¢) + ho(2a + 2b) + hy(a)

< hgla+b+2c+d)+ he(2¢c+d) + hola+2b+ c) + ha(c).
From this inequality and the one involving h; we have
{he(2a+b+ 2c+d) + hela+ b+ 2c+d) + hp{a+ 2¢c + d) + ho(2¢ + d)}
+{ho(a+2b+c)+ hp(a+b+c)+hy(a+c)+ hac)}
<{hp(2a + 2b+ 2¢) + ho(a + 2b+ 2¢) + hy((a + b + 2¢)
+ ha(b+ 2¢) + hp(2¢)} + {ha(2a + 2b) + hp(2a + )} + ha(a).

Putting in terms of g we obtain

g(2a+2b+2c+d) - g(2¢+ d) + g(2a + 2b + ¢) — g(c)

> g(2a + 3b+ 2¢) — g(2¢) + g(3a + 2b) — g(2a + b) + g(2a) — g(a).
Thus
{9(2a +2b+2c+d) — g(2a+3b+2¢)} + {g(2a + 2b + ¢) — g(3a + 2b)}
+{9(2a+b) — 9(2a)} + g(a)
> {9(2c+d) — g(2c)} + g(c)

which is effectively the inequality in the statement of the lemma. |
THEOREM 4.5: Let F be the uniform distribution over the finite interval [—a, b]
where a and b are positive.

(i) Ifa > b, then X(x) is minimized by w where w first goes to b and then

to —a.
(i) Ifa < b, then X¢(x) is minimized by w where w first goes to —a and then
to b.

Proof: By Theorem 3.5 there is a minimizing strategy x in ). We cannot
have z1 € (—a,b) and |z9| < |z3|, since in that case by either Lemma 4.3(i)
(if |z1] < [z2]) or Lemma 4.3(ii) (if |z1| > |z2|), the substitution of 0 for z;
would reduce X¢(x). If z; € (—a,b) and |za| > |z3|, then by Lemma 4.4, the
substitution of 0 for z, and x; would reduce X;(x). Thus, in all cases, X(x) is
not minimized by z; € (—a,bd). It follows that z; is one of the end-points and so
Z9 is necessarily the other end-point. By Lemma 4.2, z; must be the end-point

with the smaller absolute value and the theorem follows. |
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5. Skinny distributions

In Section 4 we saw that, when F is the uniform distribution on a finite interval,
there is a minimizing search strategy which terminates. On the other hand it
was shown in [7] that, if F' is the triangular distribution on [~1,1] and f(¢) = t*
where a > 1, then every minimizing search strategy is non-terminating. In this
section we obtain a necessary and sufficient condition for a compact distribution
to have a minimizing search strategy that terminates for the case when f(t) = t*
for @ > 1. In doing so we also obtain a weaker result for the general case. We
require the following definition.

Definition: Let F be a distribution with at least one of 2~ and % real. If z—

is real we say that F is skinny at z~ if

liminf F(¢)/(t —z~) = 0.

tla—

If xt is real we say that F is skinny at zt if

liminf(1 — F t—t)=0.
iminf(1 - F(1))/ (=™ 1)
If x~ is real we also say that F is fat at ™ if F(¢)/(t — ™) is bounded away

from 0 for z~ < t < 2~ + 1. Similarly for F is fat at x. Clearly F is fat at z~
(or z1) if and only if it is not skinny there.

THEOREM 3.1: Let F be compact with support [a, b], where a < 0 < b and skinny
at both a and b. Then every minimizing search strategy is non-terminating.

Proof: Let F be skinny at a, and suppose that there is an optimal search
strategy x with z,4; = a and 4. = b. For any a < s < min{z,_1,a/2}
meeting a condition to be set below, let y be defined with y; = z; for all j < n,

Yni1 =5, Ynp2=0b, ynyz3=u0a.
Then we have
0 ifs<t<ry;

Xy, ) - X(x,t)=< 2(b—s) ifa<t<s;
-2(s—a) ifz,<t<b.
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Thus, taking D = X;(x) — X(y), we have
b b
D= / F(2snq1(x) + )dF(t) — / F(28p41(x) + 2a — 25 + t)dF(t)
+ / " (25n(x) — )F(t) - / T f(25n(x) + 26— 25 — )P (1)
> /b 2(s — a) f1(25n41(%) + 2a — 25 + t)dF(2)

- /s 2(b— 8)fL(2s,(x) — 25+ 2b — t)dF ()

> 2(s ~ a) f1(28n41(xX) + a + T )(F(b) — F(zn))
—2(b—a)f.(28,(x) — 3a + 2b)F(s)
>0 if
F() _ Fu25m106) + a+ 2)(F(B) = Flan))
s—a (b—a)f {2s,(x) — 3a + 2b)
Note that 2s,41(X) + a + T, = 28,(x) —a+ z, > —a > 0 so the right hand side
is positive. Thus choosing s strictly between @ and min{z,_1,a/2} so that the
inequality holds, we have X ¢(x)—X(y) > 0, contrary to the assumed minimality
of X¢(x). Similarly, if F' is skinny at b, there can be no optimal search strategy
x with z,, = b and z,4; = a. Therefore, if F' is skinny at both a and b, there can
be no terminating search strategy and the theorem now follows. 1

The particular case of Theorem 5.1 when F is the triangular distribution was
proved in [7]. The proof of Theorem 6.1 in the next section shows that when

f(t) = t* we have the following stronger result.

THEOREM 5.2: Let f(t) = t* where a > 1 and F be compact with support [a, b]
where a < 0 < b. Then there is a non-terminating minimizing search strategy if
and only if F is skinny at both a and b.

6. Lopsided distributions

In this section we consider distributions for which precisely one of z~ and z*
is infinite. For such F and f(t) = t* where a > 1 we find some necessary and
some sufficient conditions for the optimal search strategies to be terminating. In
particular we shall prove that in order to have a non-terminating optimal search
strategy, the distribution must be skinny at the non-infinite member of {z~, 2z},
and we shall also show that this condition is not sufficient.
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Definition: We say that a distribution F' is lopsided to the right if there is a
real a such that Fi(a) =0and 0 < F(¢) < 1 for all ¢ > a. We define F as lopsided
to the left in an analogous manner.

The linear search problem for a distribution F lopsided to the right is interest-
ing only if @ < 0, with similar comments applying to the left. We will normalize
all distributions lopsided to the right by first moving them to the right a distance
|a| and then rescaling them so that the starting point of the search is at 1:

F(t) = F(a — at).
Those lopsided to the left are treated similarly. We will use S,(x) to denote
S |1 — ;| for all integers n and G(t) for 1 — F(¢) for all real ¢.

i=—00
THEOREM 6.1: If f(t) = t* for all t > 0 where a > 1, F(0) = 0, F(1) < 1
and F(t) > 0 for allt > 0, F is fat at 0, and [~ |t — 1|*dF(t) < oo, then, for
the search problem starting at 1, every search strategy x minimizing X,(x) Is

terminating.

Proof: Suppose, contrary to the assertion, that F satisfies the hypotheses and
that x is a non-terminating search strategy which minimizes X, (x).

Since F is fat at O, there are M > 0 and § > 0 such that F(t)/t > M for
0 <t<é Pute=M/(2a). Now

o0

0> Xo(x)= 3 /Ij“msj(xw |t—1|)°‘dF(t)‘.

j=—o0 j-1

Thus we can find an n such that

o0

>

j=n

/ T 285() + 1t ll)adF(t)’ <e

-1

Tn — Tpy1 > 1 and zpqp < 6.

Notice that z, > 1 and S,4;(x) > 1. It follows that

/ T (@81 (x) + £ — 1)%dF (1) < ¢

n

and

o o}

/ T 28ni1(x) + 2+t — 1)°dF(t) < / 9%(2841(x) + t — 1)°dF(t) < 2°.

n Tn
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Define the search strategy y by

yj=zjforallj <n, ynt1 =0, yni2 = 0.

Then
) pmin
0= 3 [ s+ - 1)
+ /xn_l(an(x) +1-t)*dF(t) + /m(25n(x) +2+1t—-1)%dF(t).
0 2%
Thus

Xo(x) — Xo(y) > /00(2Sn(x) +2 = 22,41 +t — 1)*dF(t)

- /m(zsn(x) +2+t—1)*dF(t)

n

Tn41
+ / (25"(){) + 2$n+2 — 2£L'n+1 +1-— t)adF(t)
0

_ / T 28n(x) + 1 — ) dF (1),
We see that for each t > z,, ’
(28, (x) +24+t—-1)*—(25,(x) + 2(1 —zpqy) + t - 1)
= 202041(25,(X) + 2+t — 1 — 2h(t)Tp )™}
< 20Zn41(2Sn(x) + 2+t — 1)t

for some value of h(t) between 0 and 1. Thus,

/m(zsn(x) +24+t—1)% - (25,(x) + 2(1 — zp41) + t — 1)*dF(t)

n

< 20@ns1 / (25(%) + 2 + £ — 1)*~LdF(2)

n

< 20Tny1 / (250 (x) + 2 + t — 1)*dF(2)

n

< 2"+1aezn+1 = 2"‘M:tn+1.
On the other hand

Tpt1
/ (ZSn(x) +2T,42 — 2Tp41 +1— t)a — (2Sn(x) +1- t)adF(t)
¢ Tn4l
> / 2AF(2) = 2°F(zn11).
0

It follows that X,(x) — Xo(y) > 0 if F(zn41) > Mzay1, which follows from
Zny1 < 6 and the definitions of M and é. [ |
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THEOREM 6.2: Ifp > 0, F is a (normalized) distribution lopsided to the right,
F(t) =t for all t,

1i1tni(§1f F(t)/t'*?P <1 and t7*YPG(t) -0 ast — oo,

then every minimizing search strategy is non-terminating.

Proof: Suppose, contrary to the demonstrandum, that x is a minimizing search

strategy that terminates. We may assume z; ¢ {0,00} for all : < n, 2,41 =0

and z,42 = 00. Define y by y; = z; for j =1,...,n, yp43 = 0 and yp44 = 00,
with y,41 and g,y still to be defined. Put S = Z?:—oo |z; — 1|. Then

X(x)—X(y):/ozu_125+(1—t)dF(t) + /w25+2+(t—1)dF(t)

n

- / 25 + (1 — t)dF(t)

n+1

Ynt2
_ / 25+ 21 = ynys) + (¢ — 1)dF

n

Yn+1
— / 25 + 2(yn+2 - yn+1) + (1 — t)dF(t)
0

*/ 2S+2(yn+2_yn+1)+2+(t_ 1)dF
Yn+2
Yn+t2

Yn41
= —/0 2(Ynt2 — Yny1)dF(t) + / 2= 2(1 — ypy1)dF

n

- / 2(Yn+2 = Yn41)dF
Y

et

= 2yn+1(G(zn) = G(Yn+2)) — 2(Yn+2 = Yn+1) F(¥nt1)
= 2(yYn+2 = Yn+1)G (Yn+2)

= Yn41G(Tn) = 2(Ynt2 = Yt D F (Ynt1) + Yn+1G{z0)
= 2yn+2G (Yn+2)

>0 if

2yn-+-2G'(yn+2) and F(yn+1) < G(‘Tn)
G(xn) Yn+41 2yn+2 ’

Ynt1 >

this last occurring if

F(yng1) < y}lﬂ and  G(2,)/(2Yn42) > yZH-
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We note that if y, 12 is chosen large enough, then
G@a) Y7 > (2yns2) PG yns),

which gives us

2Yn+2G (Yn2) < (G(xn) ) e
G(In) 2yn+2

Furthermore as y, 2 increases, these limits decrease and there are infinitely many

values of y,4+9 for which we have y,41 lying between

1/p
242G (Yns2)/Glea) and (Glan)/(2yns2))

for which F(y,41) < y,ll:[’; Choosing those values for y,42 and y,41, we see that
X1(y) < Xi(x), so that x cannot be minimal. The theorem now follows. 1

COROLLARY 6.3: Ifp > 0, F is a (normalized) distribution lopsided to the right,
f(t) =t for all t, lim; o F(t)/t}*? < 1, and liminf,_ ., t'*Y/PG(t) = 0, then
every optimal search strategy is non-terminating.

Proof: Same proof, mutatis mutandis. |

Using the Corollary with p = 2 it is easy to see that, for the lopsided distribu-
tion given by F(t) = exp(~—1/#%) for all ¢ > 0, every optimal search strategy is
non-terminating when f(¢) =t for all ¢.

THEOREM 6.4: If f(t) =t for all t, F is a {(normalized) distribution lopsided
to the right and x is a non-terminating optimal search strategy, then for every
T, > 1, we have both

Tnt1G(20) > (Tns2 = Tas1) F(Tny1)

and

Tn1G(Tn) > (Tnr2 — Tn43)G(Tny2).

Proof: Define y ={...,z,,0,00} where z,, > 1. Then set u = T, 11, v = Tpyo
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and w = T, 43. Taking Sp, = > 7o |z; — 1| and D = X;(x) — X1(y), we have

j=—o0

D= /wnn1 25, + (1 —t)dF(t) + /v 28, +2(1 —u)+ (1 — 1)dF(t)

t /u25n+2(v—U)+(1—t)dF(t)

+ /IM 25, + 2(v —uw) + 21 —w) + {t — 1)dF(¥)

>
j=n+4

- /oozsn +24 (t— 1)dF(t)

Zj+1 Tn—1
/ 25, +|t— 1|dF(t)‘ - / 25, + (1 —t)dF(t)
I]'_l 0

>/I"'125n+(1—t)dF(t) +/v 28, +2(1 — u) + (t — 1)dF(1)
+/u25n+2(v—u)+(1—t)dF(t)
0
+/Oo25n+2(v—u)+2(1—w)+(t—1)dF(t)

- / 25, + (1 — H)dF(t) - /oo 28, +2 + (t = dF(t)
0 T

- /u 95, + 2(v — w) + (1 - O)dF(t) — /u 25, + (1 - t)dF(t)
0 0
- / 2udF(t) — / 25, + 2+ (t - 1)dF(t)
+/0025n +2(v —u)+ 2(1 —w) + (t — 1)dF(t)
= 2(v — u)F(u) — 2u(G(x,) — G(v)) + /°° 2(v — u) — 2wdF(t)
= 2(v — u)F(u) + 2(v — w)G{v) — 2uG(x,)
>0 if
2uG(z,) < max{2(v — w)G(v), 2(v — u)F(u)},
i.e. unless both uG(z,) > (v — w)G(v) and uG(z,) > (v — u)F(u). |

We now provide an example of a lopsided distribution which is skinny at 0 but

has no non-terminating optimal search strategy.
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Example: Let f(t) =t for all ¢ and define F by

t3/2/2 ifo<t<1;
F(t)= =5
® {1—t-3/2/2 if¢> 1.

Then F'(t) = 3t=%/2/4 for t > 1, so that u < co. Let x be an optimal search
strategy and choose n so that x,, > 2. Define u = 2,11, ¥ = Tpy2 and w = 2,43

as before. Of the two inequalities in Theorem 6.4 the first gives
uz;%?/2 > (v — uyu®?/2
while the second gives
uz %2> (v — w322,

Since v > 2 and 1 > u > w, v — u and v — w are both bigger than v/2, so that
the inequalities assure

uz;3? > u??v/2 and uzD¥?* >vl?)2.

These give 2 > 7/ *u}/2v and 2uv'/22,°/% > 1.

Combining,

quvt/? > 3ul?y, or 4y/Tarl > T2 \/Tniz

which is manifestly false since x40 > x, > 2.
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